What’s Your Risk Tolerance During Construction of a Utility-Scale PV Solar Power Plant: Active Stow vs. Passive Mitigation

Utility-scale engineering and construction projects are inherently risky. Large numbers of people independently working on a site, out in the weather, around dangerous machinery large and small, racing to finish the project as quickly as possible. Most Engineering, Procurement, and Engineering (EPCs) in the solar industry have the personnel safety issue solved. There are ongoing, sophisticated efforts to ensure people on a project site are as safe as possible.

A safety issue in utility-scale PV projects that’s NOT often discussed is extreme weather risk to a partially completed power plant. Typically, the build phase for utility-scale plants is three months or longer. During that time, plant components are pieced together to an exacting workflow by skilled laborers to ensure a safe, efficient, and error-free build.

But there are still risks.

Take tracker systems for example. Depending on the design, many single-axis trackers can’t enable built-in weather risk mitigation technology until AFTER construction is almost complete or until the project is commissioned and operational. That efficient workflow to ensure safety and speed up project delivery with decentralized trackers can leave them exposed during the crucial construction months, especially to wind and hail events. As anemometers, wireless networks, power supplies, charge controllers, batteries, and motors wait to be connected, there’s a vulnerability to wind and hail.

Active stow response is the culprit here. Trackers that rely on this weather risk strategy leave structures and installed modules at risk waiting for thousands of parts to be connected and powered.

If your site encounters wind and hail during that three-month or longer build phase, the risk of damage pre-commissioning is real. And insurers and lenders are becoming more sensitive to this risk. The recent hardening of commercial insurance markets in the U.S. points this out.

If you are constructing with a tracker system that relies on active stow to mitigate wind and hail events, how does waiting for the tracker’s active stow activation affect your risk tolerance?

Are you willing to tolerate that risk exposure for 60 days? 90 days?

How do you mitigate this vulnerability until the active stow is functional?

Are lenders, financiers, or insurers willing to tolerate this build phase risk?

 

ARRAY Technologies answers these questions with a patented passive response technology.

Our passive mechanical wind mitigation is fully functional beginning with the proper assembly of the FIRST row. ARRAY Technologies’ philosophy of engineered simplicity means no waiting for the installation of literally thousands of more components. Requiring 167 fewer parts on average than a tracker with an active stow response, ARRAY’s design also reduces risk by vastly reducing components that over time will have a failure rate that’s proven to reduce uptime and production over the 30+ year expected lifecycle of a modern PV power plant.

ARRAY engineers spend a lot time thinking about wind speed, hail response, and eliminating the probability of wind and hail damage to our trackers, both during construction and after commissioning.

Download our white paper “Wind and Hail Risk Mitigation and the Firming of Commercial Insurance Markets for Utility-Scale Solar Power Plants”  to learn more about our patented passive weather risk mitigation technology and how we can help reduce your weather risk.

Click here for other articles by this author

¿Cuál es su tolerancia al riesgo durante la construcción de una planta de energía solar fotovoltaica? Posición de defensa activa frente a la mitigación pasiva

Los proyectos de ingeniería y construcción a gran escala son intrínsecamente arriesgados. Un gran número de personas trabajan de forma independiente en una obra, a la intemperie, alrededor de maquinaria peligrosa, grande y pequeña, corriendo para terminar el proyecto lo antes posible. La mayoría de las empresas de ingeniería, contratación e ingeniería (EPC) del sector solar tienen resuelta la cuestión de la seguridad del personal. Se realizan esfuerzos continuos y sofisticados para garantizar que el personal de un proyecto esté lo más seguro posible.

Un problema de seguridad en los proyectos de energía fotovoltaica que no se discute a menudo es el riesgo climático extremo para una instalación energética parcialmente terminada. Normalmente, la fase de construcción de las instalaciones dura tres meses o más. Durante ese tiempo, los componentes de la planta son ensamblados con un flujo de trabajo exigente por trabajadores cualificados para garantizar una construcción segura, eficiente y sin errores.

Pero sigue habiendo riesgos.

Por ejemplo, los sistemas de seguimiento. Dependiendo del diseño, muchos seguidores de un solo eje no pueden habilitar la tecnología de mitigación de riesgos meteorológicos incorporada hasta después de que la construcción esté casi terminada o hasta que el proyecto esté en funcionamiento. Ese flujo de trabajo eficiente para garantizar la seguridad y acelerar la entrega del proyecto con los seguidores descentralizados puede dejarlos expuestos durante los meses cruciales de la construcción, especialmente a los episodios de viento y granizo. Mientras los anemómetros, las redes inalámbricas, las fuentes de alimentación, los controladores de carga, las baterías y los motores esperan a ser conectados, existe una vulnerabilidad al viento y al granizo.

La posición de defensa activa es la culpable aquí. Los seguidores que se basan en esta estrategia dejan las estructuras y los módulos instalados en peligro a la espera de que se conecten y alimenten miles de piezas.

Si el emplazamiento se encuentra con viento y granizo durante esa fase de construcción de tres meses o más, el riesgo de daños antes de la puesta en marcha es real. Y las aseguradoras y los prestamistas son cada vez más sensibles a este riesgo. El reciente endurecimiento de los mercados de seguros comerciales en Estados Unidos así lo indica.

Si está construyendo con un sistema de seguimiento que depende de la posición de defensa activa para mitigar los eventos de viento y granizo, ¿cómo afecta a su tolerancia al riesgo la espera de la activación de la posición de defensa activa del seguidor?

¿Está dispuesto a tolerar esa exposición al riesgo durante 60 días? ¿90 días?

¿Cómo puede mitigar esta vulnerabilidad hasta que la posición de defensa activa sea funcional?

¿Están los prestamistas, financieros o aseguradores dispuestos a tolerar este riesgo en la fase de construcción?

 

ARRAY Technologies responde a estas preguntas con una tecnología patentada de respuesta pasiva

Nuestra mitigación mecánica pasiva del viento es totalmente funcional a partir del montaje adecuado de la primera fila. La filosofía de simplicidad de ingeniería de ARRAY Technologies significa que no hay que esperar a la instalación de literalmente miles de componentes más. Al requerir una media de 167 piezas menos que un seguidor con posición de defensa activa, el diseño de ARRAY también reduce el riesgo al disminuir enormemente los componentes que, con el tiempo, tendrán una tasa de fallos que ha demostrado reducir el tiempo de funcionamiento y la producción a lo largo del ciclo de vida previsto de más de 30 años de una central fotovoltaica moderna.

Los ingenieros de parques fotovoltaicos dedican mucho tiempo a pensar en la velocidad del viento, la respuesta al granizo y a eliminar la probabilidad de que el viento y el granizo dañen nuestros seguidores, tanto durante la construcción como después de la puesta en marcha.

Descargue nuestro libro blanco “Mitigación del riesgo de viento y granizo y la consolidación de los mercados de seguros comerciales para las plantas de energía solar” para obtener más información sobre nuestra tecnología patentada de mitigación pasiva del riesgo meteorológico y cómo podemos ayudarle a reducir el suyo.

Click here for other articles by this author

What’s Your Risk Tolerance During Construction of a Utility-Scale PV Solar Power Plant: Active Stow vs. Passive Mitigation

Utility-scale engineering and construction projects are inherently risky. Large numbers of people independently working on a site, out in the weather, around dangerous machinery large and small, racing to finish the project as quickly as possible. Most Engineering, Procurement, and Engineering (EPCs) in the solar industry have the personnel safety issue solved. There are ongoing, sophisticated efforts to ensure people on a project site are as safe as possible.

A safety issue in utility-scale PV projects that’s NOT often discussed is extreme weather risk to a partially completed power plant. Typically, the build phase for utility-scale plants is three months or longer. During that time, plant components are pieced together to an exacting workflow by skilled laborers to ensure a safe, efficient, and error-free build.

But there are still risks.

Take tracker systems for example. Depending on the design, many single-axis trackers can’t enable built-in weather risk mitigation technology until AFTER construction is almost complete or until the project is commissioned and operational. That efficient workflow to ensure safety and speed up project delivery with decentralized trackers can leave them exposed during the crucial construction months, especially to wind and hail events. As anemometers, wireless networks, power supplies, charge controllers, batteries, and motors wait to be connected, there’s a vulnerability to wind and hail.

Active stow response is the culprit here. Trackers that rely on this weather risk strategy leave structures and installed modules at risk waiting for thousands of parts to be connected and powered.

If your site encounters wind and hail during that three-month or longer build phase, the risk of damage pre-commissioning is real. And insurers and lenders are becoming more sensitive to this risk. The recent hardening of commercial insurance markets in the U.S. points this out.

If you are constructing with a tracker system that relies on active stow to mitigate wind and hail events, how does waiting for the tracker’s active stow activation affect your risk tolerance?

Are you willing to tolerate that risk exposure for 60 days? 90 days?

How do you mitigate this vulnerability until the active stow is functional?

Are lenders, financiers, or insurers willing to tolerate this build phase risk?

 

ARRAY Technologies answers these questions with a patented passive response technology.

Our passive mechanical wind mitigation is fully functional beginning with the proper assembly of the FIRST row. ARRAY Technologies’ philosophy of engineered simplicity means no waiting for the installation of literally thousands of more components. Requiring 167 fewer parts on average than a tracker with an active stow response, ARRAY’s design also reduces risk by vastly reducing components that over time will have a failure rate that’s proven to reduce uptime and production over the 30+ year expected lifecycle of a modern PV power plant.

ARRAY engineers spend a lot time thinking about wind speed, hail response, and eliminating the probability of wind and hail damage to our trackers, both during construction and after commissioning.

Download our white paper “Wind and Hail Risk Mitigation and the Firming of Commercial Insurance Markets for Utility-Scale Solar Power Plants”  to learn more about our patented passive weather risk mitigation technology and how we can help reduce your weather risk.

Click here for other articles by this author