Tendencias en el desarrollo y la explotación de plantas solares fotovoltaicas a nivel internacional

El crecimiento de la producción de energía solar y el desarrollo de centrales fotovoltaicas a gran escala ya no son tendencias aisladas a nivel regional.

De hecho, a medida que avanza el año 2021, trae consigo la promesa de un crecimiento nunca visto en la producción y el desarrollo de energía solar fotovoltaica en todo el mundo.

La revista PV Magazine destacó recientemente este crecimiento, señalando que:

  • Con la ayuda de políticas de bajas emisiones de carbono favorables a la industria y de ambiciosos objetivos de energía verde, la energía solar está experimentando un boom mundial.
  • El Reino Unido añadió 545 MW de capacidad solar el año pasado para alcanzar un total de 13,9 GW, y la UE registró un aumento anual de 7 TWh en el tercer trimestre de 2020, impulsado en gran medida por la aparición de España como una verdadera potencia solar.

Y recientemente, SolarPower Europe y EIT InnoEnergy lanzaron la Iniciativa Solar Europea (ESI) para ayudar a acelerar aún más el crecimiento del mercado solar fotovoltaico europeo más allá del impresionante 11% realizado en 2020, todo ello logrado frente a los vientos en contra de la pandemia mundial.

Este crecimiento, y los retos que seguramente lo acompañarán, necesitarán soluciones a la altura.

El equipo de expertos de ARRAY Technologies está preparado para ayudar a los EPC, a los promotores de plantas fotovoltaicas, a los inversores y a las aseguradoras a capitalizar el enorme potencial solar de estas regiones, incluyendo América Latina, el Caribe, Australia y Europa.

 

Tendencias internacionales

Como ocurre en muchos lugares del mundo, las plantas solares fotovoltaicas tendrán que desarrollarse en lugares no óptimos, a tiempo y dentro del presupuesto, y teniendo en cuenta un rendimiento sólido y un menor coste total de propiedad durante décadas.

Para hacer realidad esa visión, existen oportunidades en las siguientes tendencias solares internacionales clave:

  1. La ampliación de las filas de módulos.
  2. Un cambio hacia un enfoque en los gastos operativos y un menor riesgo asumido por los promotores y propietarios.
  3. Innovación en los módulos para condiciones difíciles.
  4. Facilidad de instalación y funcionamiento.

 

La extensión de las filas del módulo

Para optimizar el rendimiento energético de una instalación fotovoltaica es necesario maximizar la cobertura del emplazamiento, incluso en terrenos difíciles. La ampliación de las filas de módulos puede ayudar a los desarrolladores a conseguirlo.

Esta tendencia a ampliar las filas de módulos permitirá a los promotores de lugares como España, que está previsto que duplique el ritmo de crecimiento del líder europeo, Alemania, en un futuro inmediato, construir plantas potentes y de alto rendimiento, independientemente del terreno.

Al aprovechar una fila de seguidores de cuatro cadenas en lugar de una fila más tradicional de tres cadenas, el coste global por vatio de cada fila individual se reduce drásticamente. La idea central es ofrecer configuraciones de planta más flexibles que ayuden a los promotores a aprovechar los emplazamientos solares no tradicionales y a encontrar el diseño más eficiente y rentable para una zona concreta.

Al ampliar la longitud de las filas de módulos, hay más espacio para optimizar la ubicación de las columnas y permitir el tramo de tubos determinado. Además, una reducción del número total de filas reduce drásticamente el número mínimo de componentes estándar y los costes asociados a su implementación. Por ejemplo, una configuración de cuatro filas puede reducir a menudo los motores por sitio de forma sustancial. Y, obviamente, un menor número de bloques de motor de mayor tamaño crea una mayor densidad energética y disminuye los índices generales de fallos de los componentes.

A medida que los proyectos internacionales de todo el mundo tratan de sacar el máximo provecho de las ubicaciones propuestas para las plantas fotovoltaicas, la capacidad de ampliar las filas de módulos actúa como otra herramienta para encontrar la configuración óptima, reduciendo tanto los gastos de capital como los gastos operativos, y maximizando la producción de energía.

 

Un mayor enfoque en los gastos operativos y un menor riesgo asumido por los desarrolladores y propietarios

La rentabilidad del proyecto a largo plazo y la planificación financiera para el ciclo de vida de una planta fotovoltaica son consideraciones clave para obtener el máximo valor de un proyecto a gran escala.

El enfoque general de la industria está pasando de una mentalidad de CAPEX a otra más preocupada por el OPEX y el coste de propiedad a lo largo de la vida, especialmente a medida que se dispone de datos más sólidos sobre el rendimiento a largo plazo de los seguidores solares de un solo eje.

El uso de seguidores de un solo eje y las estrategias destinadas a aumentar la densidad de potencia de las hileras, optimizar la cobertura del suelo y potenciar el rango de movimiento ayudan a los promotores a ahorrar dinero a lo largo de la vida útil de la planta, mientras que las soluciones menos robustas y más centradas en el CAPEX están empezando a agotar los recursos a menos de una década de funcionamiento.

El ahorro y la confianza que proporcionan unas inversiones más estables y a más largo plazo podrían reducir el riesgo general de los EPC, sobre todo en lugares como Australia, donde el país se esfuerza por encontrar una forma de conectar y distribuir mejor la creciente generación de energía renovable entre una red con problemas. Cuanto menos riesgo presente una planta y más dólares se puedan ahorrar para ayudar a diseñar estas conexiones, mejor.

 

Innovación en los módulos para condiciones complejas

En todo el mundo, el tamaño de los módulos tiende a ser mayor. A medida que aumenta su tamaño, también lo hace su susceptibilidad a los daños causados por el viento, lo que puede suponer mayores costes de seguro y un mayor riesgo para el proyecto.

Los seguidores de un eje de ARRAY están equipados para aprovechar un sistema patentado de mitigación de la carga del viento que no depende de la sujeción activa, los sensores o la electricidad.

Esta innovación permite a los seguidores de ARRAY hacer frente a las altas velocidades del viento, incluso ante el aumento del tamaño de los módulos, y la innovación en su conjunto está ayudando a aumentar la eficiencia de la planta, a reducir el riesgo de daños climáticos y a crear plantas más rentables.

 

Facilidad de instalación y funcionamiento

Los países y las regiones que trabajan para aumentar la producción solar y acelerar la construcción atraerán a los inversores, pero esos inversores y los EPC necesitan reducir el riesgo.

ARRAY ofrece un sólido soporte logístico y de proyectos, así como seguidores de un solo eje con más de 160 componentes menos que las soluciones tradicionales.

Esto, combinado con herramientas en forma de filas ampliadas y soluciones para terrenos no óptimos, ayuda a los EPC a reducir los costes de mano de obra, agilizar los plazos de construcción y aprovechar el poder de los expertos dedicados al rendimiento y el coste de propiedad a largo plazo de las plantas solares fotovoltaicas.

ARRAY Technologies se dedica a proporcionar apoyo integral a los proyectos de plantas fotovoltaicas a gran escala con equipos globales y locales comprometidos con el rendimiento y la rentabilidad de la planta a largo plazo.

Para obtener más información, póngase en contacto con nosotros.

Click here for other articles by this author

Trends in International Utility-Scale PV Solar Plant Development and Operation

Growth in solar energy production and the development of utility-scale photovoltaic power plants are no longer regionally isolated trends.

In fact, as 2021 rolls on, it’s bringing with it the promise of unseen growth in PV solar production and development around the globe.

PV Magazine recently highlighted this growth, noting that:

  • Assisted by industry-friendly, low-carbon policies and ambitious green energy goals, solar energy is experiencing a global boom.
  • The UK added 545 MW of solar capacity last year to reach 13.9 GW total, and the EU recorded an annual rise of 7 TWh in the third quarter of 2020, largely driven by the emergence of Spain as a true solar powerhouse.

And recently, SolarPower Europe and EIT InnoEnergy launched the European Solar Initiative (ESI) to help further accelerate European PV solar market growth past the impressive 11% realized in 2020 — all achieved in the face of headwinds of the global pandemic.

This growth, and the challenges sure to accompany it, will need solutions to match.

ARRAY Technologies’ expert team is ready to aid EPCs, PV plant developers, investors, and insurers to capitalise on tremendous solar potential in these regions, including in Latin America, the Caribbean, Australia, and Europe.

 

Addressing International Trends in Utility-Scale PV Solar

As is the case in many places around the world, utility-scale PV solar plants will need to be developed in less-than-optimal locations, on time and on budget, and with robust performance and lower total cost of ownership over decades in mind.

In making that vision a reality, opportunity exists in the following key international solar trends:

  1. The Extension of Module Rows
  2. A Shift Toward a Focus on OpEx and Less Assumed Risk by Developers and Owners
  3. Module Innovation for Difficult Conditions
  4. Ease of Installation and Operation

 

The Extension of Module Rows

Optimizing power yield of a utility-scale PV power plant requires maximizing site coverage, even in difficult terrain. Extending module rows can help developers do just that.

This trend of extending module rows will empower developers in places like Spain, which is set to nearly double the growth pace of European leader Germany in the immediate future, to build powerful, high-output sites, regardless of terrain.

By leveraging a four-string tracker row as opposed to a more traditional three-string row, the overall cost per watt of each individual row is drastically lowered. The central idea is to offer more flexible plant configurations that help developers take advantage of non-traditional solar sites and find the most efficient, cost-effective design for a particular area.

By extending module row length, there’s more room to optimise column location and allow for the determined tube span. Further, a reduction in overall row count dramatically reduces the minimum number of standard components and the costs associated with their implementation. For example, a four-string configuration can often reduce motors per site substantially. And obviously, fewer larger motor blocks create greater power density and decreases overall component failure rates.

As international sites around the world grapple with how to get the most out of proposed utility-scale PV plant locations, the ability to extend module rows acts as another tool in finding the optimal configuration, reducing both CAPEX and OPEX, and maximizing power production.

 

A Shift Toward a Focus on OpEx and Less Assumed Risk by Developers and Owners

Long-term project profitability and financial planning for the lifecycle of a PV plant are key considerations for getting the most value out of a utility-scale project.

The industry’s general focus is shifting from a CAPEX mindset to one more concerned with OPEX and lifetime cost of ownership, particularly as more robust data is made available regarding long-term performance of single-axis solar trackers.

The use of single-axis trackers and strategies aimed at increasing row power density, optimising ground coverage, and boosting range of motion help developers save money over the life of the plant, whereas less robust and more CAPEX-focused solutions are beginning to drain resources less than a decade into operation.

The savings and confidence provided by more stable, longer-term investments could reduce overall risk for EPCs, particularly in places like Australia, where the country is scrambling to find a way to better connect and distribute exploding renewable energy production among a struggling grid. The less risk a plant presents and the more dollars that can be saved to help engineer these connections, the better.

 

Module Innovation for Difficult Conditions

Around the globe, module size is trending in one direction – bigger. As their size increases, so does their susceptibility to wind damage, which can lead to greater insurance costs and heightened project risk.

Array’s single-axis trackers are equipped to leverage a patented, wind-load mitigation system that doesn’t rely on active stow, sensors, or electricity.

This innovation allows ARRAY trackers to handle high wind speeds, even in the face of increasing module sizes, and innovation as a whole is helping to increase plant efficiency, reduce the risk of weather damage, and create more profitable plants.

 

Ease of Installation and Operation

Countries and regions working to elevate solar production and accelerate buildout will draw investors, but those investors and EPCs need to lower risk.

ARRAY provides robust project and logistics support, as well as single-axis trackers that feature more than 160 fewer components than traditional solutions.

This, combined with tools in the form of extended rows and solutions for non-optimal terrain, helps EPCs lower labor costs, streamline construction timelines, and leverage the power of experts dedicated to the long-term performance and cost of ownership of PV solar plants.

ARRAY Technologies is dedicated to providing end-to-end support for utility-scale PV power plant projects with global and local teams committed to long-term plant performance and profitability.

To learn more, contact us today.

Click here for other articles by this author

Trends in International Utility-Scale PV Solar Plant Development and Operation

Growth in solar energy production and the development of utility-scale photovoltaic power plants are no longer regionally isolated trends.

In fact, as 2021 rolls on, it’s bringing with it the promise of unseen growth in PV solar production and development around the globe.

PV Magazine recently highlighted this growth, noting that:

  • Assisted by industry-friendly, low-carbon policies and ambitious green energy goals, solar energy is experiencing a global boom.
  • The UK added 545 MW of solar capacity last year to reach 13.9 GW total, and the EU recorded an annual rise of 7 TWh in the third quarter of 2020, largely driven by the emergence of Spain as a true solar powerhouse.

And recently, SolarPower Europe and EIT InnoEnergy launched the European Solar Initiative (ESI) to help further accelerate European PV solar market growth past the impressive 11% realized in 2020 — all achieved in the face of headwinds of the global pandemic.

This growth, and the challenges sure to accompany it, will need solutions to match.

ARRAY Technologies’ expert team is ready to aid EPCs, PV plant developers, investors, and insurers to capitalise on tremendous solar potential in these regions, including in Latin America, the Caribbean, Australia, and Europe.

 

Addressing International Trends in Utility-Scale PV Solar

As is the case in many places around the world, utility-scale PV solar plants will need to be developed in less-than-optimal locations, on time and on budget, and with robust performance and lower total cost of ownership over decades in mind.

In making that vision a reality, opportunity exists in the following key international solar trends:

  1. The Extension of Module Rows
  2. A Shift Toward a Focus on OpEx and Less Assumed Risk by Developers and Owners
  3. Module Innovation for Difficult Conditions
  4. Ease of Installation and Operation

 

The Extension of Module Rows

Optimizing power yield of a utility-scale PV power plant requires maximizing site coverage, even in difficult terrain. Extending module rows can help developers do just that.

This trend of extending module rows will empower developers in places like Spain, which is set to nearly double the growth pace of European leader Germany in the immediate future, to build powerful, high-output sites, regardless of terrain.

By leveraging a four-string tracker row as opposed to a more traditional three-string row, the overall cost per watt of each individual row is drastically lowered. The central idea is to offer more flexible plant configurations that help developers take advantage of non-traditional solar sites and find the most efficient, cost-effective design for a particular area.

By extending module row length, there’s more room to optimise column location and allow for the determined tube span. Further, a reduction in overall row count dramatically reduces the minimum number of standard components and the costs associated with their implementation. For example, a four-string configuration can often reduce motors per site substantially. And obviously, fewer larger motor blocks create greater power density and decreases overall component failure rates.

As international sites around the world grapple with how to get the most out of proposed utility-scale PV plant locations, the ability to extend module rows acts as another tool in finding the optimal configuration, reducing both CAPEX and OPEX, and maximizing power production.

 

A Shift Toward a Focus on OpEx and Less Assumed Risk by Developers and Owners

Long-term project profitability and financial planning for the lifecycle of a PV plant are key considerations for getting the most value out of a utility-scale project.

The industry’s general focus is shifting from a CAPEX mindset to one more concerned with OPEX and lifetime cost of ownership, particularly as more robust data is made available regarding long-term performance of single-axis solar trackers.

The use of single-axis trackers and strategies aimed at increasing row power density, optimising ground coverage, and boosting range of motion help developers save money over the life of the plant, whereas less robust and more CAPEX-focused solutions are beginning to drain resources less than a decade into operation.

The savings and confidence provided by more stable, longer-term investments could reduce overall risk for EPCs, particularly in places like Australia, where the country is scrambling to find a way to better connect and distribute exploding renewable energy production among a struggling grid. The less risk a plant presents and the more dollars that can be saved to help engineer these connections, the better.

 

Module Innovation for Difficult Conditions

Around the globe, module size is trending in one direction – bigger. As their size increases, so does their susceptibility to wind damage, which can lead to greater insurance costs and heightened project risk.

Array’s single-axis trackers are equipped to leverage a patented, wind-load mitigation system that doesn’t rely on active stow, sensors, or electricity.

This innovation allows ARRAY trackers to handle high wind speeds, even in the face of increasing module sizes, and innovation as a whole is helping to increase plant efficiency, reduce the risk of weather damage, and create more profitable plants.

 

Ease of Installation and Operation

Countries and regions working to elevate solar production and accelerate buildout will draw investors, but those investors and EPCs need to lower risk.

ARRAY provides robust project and logistics support, as well as single-axis trackers that feature more than 160 fewer components than traditional solutions.

This, combined with tools in the form of extended rows and solutions for non-optimal terrain, helps EPCs lower labor costs, streamline construction timelines, and leverage the power of experts dedicated to the long-term performance and cost of ownership of PV solar plants.

ARRAY Technologies is dedicated to providing end-to-end support for utility-scale PV power plant projects with global and local teams committed to long-term plant performance and profitability.

To learn more, contact us today.

Click here for other articles by this author