Utility-Scale PV Solar Trends: Increasing Power and Module Size

A primary goal of utility-scale PV power plants is to optimize power production. To achieve that goal, manufacturers are turning to increased module sizes in the hopes of increasing module power. This can bring lower levelized cost of energy, lower balance of system costs, faster installation, and, sometimes, even reduced land costs.

With 650W+ modules now available, it appears that large module formats are here to stay, particularly when manufacturers can create them in comparable time to smaller modules.

This is promising in terms of pure module power – but that doesn’t mean there aren’t implications to navigate. How will trackers accommodate these large format modules? How will inverter choices and system layouts change? Will new construction codes crop up to inform design? How will insurers react? And on top of all that, there are structural and mechanical engineering considerations, especially in high-wind environments. 

This all adds up to a clear need for industry collaboration between developers, module manufacturers and mounting system providers to work toward a common goal of efficient standardization. This collaboration will help prevent significant cost increases in balance of system, installation and soft costs that could negate the benefits of technological progress.

 

Breaking Down the Site-Wide Costs Associated with Larger Solar Modules

Module size alterations can potentially lead to improved cost per watt for PV plants, lower labor costs associated with installation, and elevated row-by-row production. They also have the potential, though, to introduce elevated mounting system costs, including trackers.

Because of this, informed design decisions during the planning phase can help avoid these higher costs and lead to better optimization of entire systems and sites.

For example, increasing structural designs to accommodate higher loads levied by larger modules could potentially interfere with the power generation capacity of the back side of panels, and more support structure, in general, could result in higher freight costs, extended installation times, and more.

That means that weighing the potential benefits in terms of production against these costs is critical, as is thoroughly assessing the risks associated with larger modules in terms of resilience in the face of high winds and heavy snow loading.

 

Collaboration as the Way Forward in Navigating Increasing Module Sizes

As it stands, it will be difficult for the solar energy industry to continue producing larger and larger modules without seeing corresponding increases in balance of plant and insurance costs.

Other considerations are also important, such as the aforementioned impact of snow loading due to the sheer surface area increases found in larger modules and the changing impacts of shading, torque, wind, and more.

Dave Sharratt, VP of International Business Development at ARRAY mentions that “There could be some unintended consequences if all the players in the utility-scale PV ecosystem operate in silos about their advancing technologies. For example, structures that are built for lower wind speeds may not be able to handle larger modules in regions with extreme weather. Also, larger modules logically may require more support structure. This increases installation time, freight and logistics costs, and overall a higher build cost for EPCs. Rigorous analysis past simple OpEx is needed to determine best-in-class components that are compatible to ensure seamless integration and plant resiliency.”  

ARRAY is committed to helping foster the collaboration between developers, module manufacturers, and mounting system providers. This collaboration is critical to avoid unexpected increases in PV plant project costs.

Dr. Mengyuan Li, ARRAY Technologies’ Business Development Director for Asia, stresses that “There’s a positive and increasing trend of accelerating engineering collaboration between module manufacturers and structure providers like ARRAY to standardize design goals to ensure these larger modules don’t simply create additional expenses in the balance of systems or project insurance. Finding the lowest LCOE for investors needs to be a collective effort through the value chain.”

In conducting a study to better understand the relationship between larger PV modules and site-wide costs, ARRAY found:

  • Lower module weight leads to longer rows, which can significantly decrease tracker costs across the plant
  • Longer modules typically generate more power per unit length along the tracker row. In areas with relatively low wind and snow loads this is often a great solution to reduce tracker cost per Watt. But on sites with relatively high loads the longer module transfers more of these loads to the tracker structure and increases the number of required foundations and weight of module support components
  • Larger modules typically generate more power per tracker row, but it may be at the expense of higher costs in the tracker structure and module support components
  • Modules with large surface areas and relatively thin frames will require heavier clamp solutions to offset deflection
  • Module efficiency is the most direct correlation between module characteristics and reduced tracker costs
  • Modules with relatively low power but high efficiency resulted in lower tracker costs
  • Output power alone correlates poorly with tracker cost

Array’s engineering experts act as trusted advisors to our clients, helping steer developers and financiers through decisions that require a working knowledge of the quickly evolving trends in utility-scale solar.

Array’s team goes to great lengths to ensure that module support and clamping considerations result in the minimum amount of shading and the ideal distance between module backside and the torque tube, helping optimize site design. This trend is simply one in a long line of advancements and innovations we have seen during our 30+ years of experience in utility-scale solar. Our primary goal continues to be to help each and every developer, EPC, and asset owner achieve the best possible outcome via the most cost-effective and productive solution.

To learn more, contact us today, or download your copy of our recent white paper “Larger PV Modules: Breaking Down Site-Wide Costs” by clicking HERE.

Click here for other articles by this author

Tendencias de la energía solar fotovoltaica: Aumento de la potencia y del tamaño de los módulos

Uno de los principales objetivos de las instalaciones fotovoltaicas a gran escala es optimizar la producción de energía. Para lograrlo, los fabricantes recurren a módulos de mayor tamaño con la esperanza de aumentar su potencia. Esto puede suponer un menor coste nivelado de la energía, menores costes de equilibrio del sistema, una instalación más rápida y, a veces, incluso una reducción de los costes del terreno.

Con los módulos de más de 650 W ya disponibles, parece que los formatos de módulos grandes han llegado para quedarse, sobre todo cuando los fabricantes pueden crearlos en un tiempo comparable al de los módulos más pequeños.

Esto es prometedor en cuanto a la potencia pura de los módulos, pero eso no significa que no haya implicaciones que afrontar. ¿Cómo se adaptarán los seguidores a estos módulos de gran formato? ¿Cómo cambiarán las opciones de inversores y la disposición de los sistemas? ¿Aparecerán nuevos códigos de construcción para informar sobre el diseño? ¿Cómo reaccionarán las aseguradoras? Y además de todo esto, hay que tener en cuenta la ingeniería estructural y mecánica, especialmente en entornos con mucho viento.

Todo esto se suma a una clara necesidad de colaboración en la industria entre los desarrolladores, los fabricantes de módulos y los proveedores de sistemas de montaje para trabajar hacia un objetivo común de estandarización eficiente. Esta colaboración ayudará a evitar aumentos significativos de costes en el equilibrio del sistema, la instalación y los costes reducidos que podrían anular los beneficios del progreso tecnológico.

 

Desglose de los costes asociados a los módulos solares de mayor tamaño

Los cambios en el tamaño de los módulos pueden mejorar el coste por vatio de las plantas fotovoltaicas, reducir los costes de mano de obra asociados a la instalación y aumentar la producción por filas. Sin embargo, también pueden suponer un aumento de los costes del sistema de montaje, incluidos los seguidores.

Por ello, las decisiones de diseño informadas durante la fase de planificación pueden ayudar a evitar estos costes más elevados y conducir a una mejor optimización de los sistemas y emplazamientos completos.

Por ejemplo, el aumento de los diseños estructurales para acomodar las mayores cargas impuestas por los módulos más grandes podría interferir con la capacidad de generación de energía de la parte posterior de los paneles, y una mayor estructura de soporte, en general, podría dar lugar a mayores costes de transporte, tiempos de instalación prolongados, etc.

Esto significa que es fundamental sopesar los beneficios potenciales en términos de producción frente a estos costes, así como evaluar a fondo los riesgos asociados a los módulos de mayor tamaño en términos de resistencia frente a fuertes vientos y cargas de nieve.

 

La colaboración es el camino a seguir

Tal y como están las cosas, será difícil que el sector de la energía solar siga produciendo módulos cada vez más grandes sin que se produzcan los correspondientes aumentos en los costes de equilibrio de la planta y de los seguros.

También son importantes otras consideraciones, como el ya mencionado impacto de la carga de la nieve, debido al aumento de la superficie de los módulos de mayor tamaño, y los efectos cambiantes del sombreado, la torsión y el viento, entre otros.

Dave Sharratt, Vicepresidente de Desarrollo Comercial Internacional de ARRAY, menciona que “podría haber algunas consecuencias no deseadas si todos los actores del ecosistema fotovoltaico  operan en solitario sobre sus tecnologías en progreso. Por ejemplo, las estructuras que se construyen para velocidades de viento más bajas pueden no ser capaces de soportar módulos más grandes en regiones con climas extremos. Además, los módulos más grandes requieren lógicamente más estructura de soporte. Esto aumenta el tiempo de instalación, los costes de transporte y logística y, en general, un mayor coste de construcción para los EPC. Se necesita un análisis riguroso que vaya más allá del simple OpEx para determinar los mejores componentes de su clase que sean compatibles para garantizar una integración perfecta y la resistencia de la planta”.

ARRAY se compromete a ayudar a fomentar la colaboración entre desarrolladores, fabricantes de módulos y proveedores de sistemas de montaje. Esta colaboración es fundamental para evitar aumentos inesperados en los costes de los proyectos de plantas fotovoltaicas.

El Dr. Mengyuan Li, Director de Desarrollo de Negocio de ARRAY Technologies para Asia, subraya que “existe una tendencia positiva y creciente de acelerar la colaboración de ingeniería entre los fabricantes de módulos y los proveedores de estructuras como ARRAY para estandarizar los objetivos de diseño y garantizar que estos módulos de mayor tamaño no generen simplemente gastos adicionales en el balance de sistemas o en el seguro del proyecto. Encontrar el LCOE más bajo para los inversores tiene que ser un esfuerzo colectivo a través de la cadena de valor”.

Al realizar un estudio para comprender mejor la relación entre los módulos fotovoltaicos de mayor tamaño y los costes de todo el emplazamiento, ARRAY descubrió:

  • Un menor peso de los módulos conduce a filas más largas, lo que puede reducir significativamente los costes de los seguidores en toda la planta.
  • Los módulos más largos suelen generar más energía por unidad de longitud a lo largo de la fila de seguidores.
  • En zonas con cargas de viento y nieve relativamente bajas, esto suele ser una gran solución para reducir el coste del seguidor por vatio.
  • Pero en lugares con cargas relativamente altas, el módulo más largo transfiere más de estas cargas a la estructura del seguidor y aumenta el número de cimientos necesarios y el peso de los componentes de soporte del módulo.
  • Los módulos más grandes suelen generar más potencia por fila de seguidor, pero puede ser a costa de mayores costes en la estructura del seguidor y en los componentes de soporte del módulo.
  • Los módulos con grandes superficies y marcos relativamente finos requerirán soluciones de sujeción más pesadas para compensar la desviación.
  • La eficiencia del módulo es la correlación más directa entre las características del módulo y la reducción de los costes del seguidor.
  • Los módulos con una potencia relativamente baja, pero con una alta eficiencia, dan lugar a costes más bajos de los seguidores.
  • La potencia de salida, por sí sola, tiene una escasa correlación con el coste del seguidor.

Los expertos en ingeniería de ARRAY actúan como asesores de confianza de nuestros clientes, ayudando a guiar a los desarrolladores y a los financieros a través de decisiones que requieren un conocimiento práctico de las tendencias en rápida evolución de la energía solar a gran escala.

El equipo de ARRAY hace todo lo posible para garantizar que el soporte del módulo y las consideraciones de sujeción den como resultado la cantidad mínima de sombra y la distancia ideal entre la parte trasera del módulo y el tubo de torsión, ayudando a optimizar el diseño del sitio. Esta tendencia no es más que una de las muchas innovaciones que hemos visto durante nuestros más de 30 años de experiencia en el sector solar. Nuestro objetivo principal sigue siendo ayudar a todos y cada uno de los promotores, EPC y propietarios de activos a conseguir el mejor resultado posible mediante la solución más rentable y productiva.

Para obtener más información, póngase en contacto con nosotros, o descargue su copia de nuestro reciente libro blanco “Larger PV Modules: Breaking Down Site-Wide Costs” haciendo clic AQUÍ.

Click here for other articles by this author

Utility-Scale PV Solar Trends: Increasing Power and Module Size

A primary goal of utility-scale PV power plants is to optimize power production. To achieve that goal, manufacturers are turning to increased module sizes in the hopes of increasing module power. This can bring lower levelized cost of energy, lower balance of system costs, faster installation, and, sometimes, even reduced land costs.

With 650W+ modules now available, it appears that large module formats are here to stay, particularly when manufacturers can create them in comparable time to smaller modules.

This is promising in terms of pure module power – but that doesn’t mean there aren’t implications to navigate. How will trackers accommodate these large format modules? How will inverter choices and system layouts change? Will new construction codes crop up to inform design? How will insurers react? And on top of all that, there are structural and mechanical engineering considerations, especially in high-wind environments. 

This all adds up to a clear need for industry collaboration between developers, module manufacturers and mounting system providers to work toward a common goal of efficient standardization. This collaboration will help prevent significant cost increases in balance of system, installation and soft costs that could negate the benefits of technological progress.

 

Breaking Down the Site-Wide Costs Associated with Larger Solar Modules

Module size alterations can potentially lead to improved cost per watt for PV plants, lower labor costs associated with installation, and elevated row-by-row production. They also have the potential, though, to introduce elevated mounting system costs, including trackers.

Because of this, informed design decisions during the planning phase can help avoid these higher costs and lead to better optimization of entire systems and sites.

For example, increasing structural designs to accommodate higher loads levied by larger modules could potentially interfere with the power generation capacity of the back side of panels, and more support structure, in general, could result in higher freight costs, extended installation times, and more.

That means that weighing the potential benefits in terms of production against these costs is critical, as is thoroughly assessing the risks associated with larger modules in terms of resilience in the face of high winds and heavy snow loading.

 

Collaboration as the Way Forward in Navigating Increasing Module Sizes

As it stands, it will be difficult for the solar energy industry to continue producing larger and larger modules without seeing corresponding increases in balance of plant and insurance costs.

Other considerations are also important, such as the aforementioned impact of snow loading due to the sheer surface area increases found in larger modules and the changing impacts of shading, torque, wind, and more.

Dave Sharratt, VP of International Business Development at ARRAY mentions that “There could be some unintended consequences if all the players in the utility-scale PV ecosystem operate in silos about their advancing technologies. For example, structures that are built for lower wind speeds may not be able to handle larger modules in regions with extreme weather. Also, larger modules logically may require more support structure. This increases installation time, freight and logistics costs, and overall a higher build cost for EPCs. Rigorous analysis past simple OpEx is needed to determine best-in-class components that are compatible to ensure seamless integration and plant resiliency.”  

ARRAY is committed to helping foster the collaboration between developers, module manufacturers, and mounting system providers. This collaboration is critical to avoid unexpected increases in PV plant project costs.

Dr. Mengyuan Li, ARRAY Technologies’ Business Development Director for Asia, stresses that “There’s a positive and increasing trend of accelerating engineering collaboration between module manufacturers and structure providers like ARRAY to standardize design goals to ensure these larger modules don’t simply create additional expenses in the balance of systems or project insurance. Finding the lowest LCOE for investors needs to be a collective effort through the value chain.”

In conducting a study to better understand the relationship between larger PV modules and site-wide costs, ARRAY found:

  • Lower module weight leads to longer rows, which can significantly decrease tracker costs across the plant
  • Longer modules typically generate more power per unit length along the tracker row. In areas with relatively low wind and snow loads this is often a great solution to reduce tracker cost per Watt. But on sites with relatively high loads the longer module transfers more of these loads to the tracker structure and increases the number of required foundations and weight of module support components
  • Larger modules typically generate more power per tracker row, but it may be at the expense of higher costs in the tracker structure and module support components
  • Modules with large surface areas and relatively thin frames will require heavier clamp solutions to offset deflection
  • Module efficiency is the most direct correlation between module characteristics and reduced tracker costs
  • Modules with relatively low power but high efficiency resulted in lower tracker costs
  • Output power alone correlates poorly with tracker cost

Array’s engineering experts act as trusted advisors to our clients, helping steer developers and financiers through decisions that require a working knowledge of the quickly evolving trends in utility-scale solar.

Array’s team goes to great lengths to ensure that module support and clamping considerations result in the minimum amount of shading and the ideal distance between module backside and the torque tube, helping optimize site design. This trend is simply one in a long line of advancements and innovations we have seen during our 30+ years of experience in utility-scale solar. Our primary goal continues to be to help each and every developer, EPC, and asset owner achieve the best possible outcome via the most cost-effective and productive solution.

To learn more, contact us today, or download your copy of our recent white paper “Larger PV Modules: Breaking Down Site-Wide Costs” by clicking HERE.

Click here for other articles by this author