1MIP vs 2MIP – The Facts on Bifacial Gain

In my previous post, Exploring Bifacial 2MIL for LCOE Optimization, I touched on the various formats ARRAY has used for bifacial mounting. I also talked about how we’re exploring every option and zeroing in on whether our standard format, 1 Module In Portrait (1MIP), is the best way to give our customers optimized bifacial solar production.

In this post, I’ll discuss in more detail how we’ve been testing 1MIP bifacial module performance and validating them against other third-party results—specifically, how we’re examining the pros and cons of the two most popular bifacial formats: 1MIP and 2 Module In Portrait (2MIP), and which is the better format for bifacial gains.

 

1MIP vs 2MIP Bifacial Solar Mounting

To quickly define terms, 1MIP stands for 1 module-in-portrait and 2MIP for 2 modules-in-portrait. A 1MIP bifacial panel is mounted across the solar tracker, while 2MIP has two separate panels on either side of the tracker post and torque tube.

With bifacial PV, it’s important to estimate how much light you’re receiving on the front side of the arrays, but also to calculate how much irradiance you get on the backside. Bifacial energy gains come from an increase in the total irradiance.

Our engineers have released third-party validated data showing that 1MIP collects more light on the backside than 2MIP. Using this 2D model, they were able to calculate how much of the ground is shaded, how much of the ground gets light from the sun, and how much of that reflected light the PV modules capture.

Back-to-front irradiance ratio (BFIR) describes the available light for bifacial and is a good measure of the total available bifacial resource. BFIR is dependent on the albedo, climate, ground-coverage ratio (GCR), and tracker aspect ratio (row height/width).

What our engineers are finding falls in line with PVsyst calculations and many other published white papers in the industry, all of which show higher BFIR for 1MIP systems than for 2MIP systems.

 

Shading Losses Are Not Zero, Even for 2MIP

There’s been talk about the potential shading of bifacial panels in a 1MIP format, and ideas that 2MIP solves this problem by spacing the panels out on either side. ARRAY partnered with PV Lighthouse to study this topic in detail. PV Lighthouse’s SunSolve™ software is widely regarded as one of the most advanced 3D ray-tracing solutions for PV.

One of the important findings from PV Lighthouse’s study was that it is in fact not a good idea to have a gap between the east and west panels. Any gap between the east and west panels effectively increases the ground coverage ratio when the row-to-row spacing is fixed, and the energy loss from the longer backtracking required ends up outweighing any benefit from the reduced shading on the back. So a zero east-west gap turns out to be the optimal setup for modules on 2MIP trackers, in which case the structural shading losses become very similar to the 1MIP trackers.

PV Lighthouse’s ray-tracing calculations further show that the mismatch loss from a torque tube shading is small, in the order of 0.2%. This is due to the backside irradiance arriving at the module at high angles from both sides of the torque tube, resulting in a soft shadow that causes only very small cell-to-cell total irradiance mismatch.

We carried out third party testing to see if the structural shading under high-albedo conditions can cause problems such as hot spots or bypass diode activations, but we were not able to reproduce such issues in realistic setups where the array is continuously maximum-power-point (MPP)-tracked with an inverter. There had been a prior work showing hot spots appear due to torque tube shading in a short-circuited module, but this setup is not representative of what happens in the real-world conditions.

Speculation that’s often brought up is that the height from the ground makes a big difference in BFIR. Three-dimensional ray-tracing studies, as well as two-dimensional view-factor approaches (possible with PVsyst) reveal that this notion is simply not true. It is the aspect ratio (ratio of the row height to the row width) that drives the BFIR, under the same conditions of GCR and albedo.

Sunlight arrives at the ground through the openings between the tracker rows, but a substantial portion of the ground-reflected light escapes back to the sky through those very openings. It is the aspect ratio, and not the absolute row height, that determines the ratio of captured versus lost light.

In the realistic ranges of row height, determined by material costs and workability on field, the aspect ratio is almost always higher for 1MIP trackers than 2MIP trackers, which in turn results in the BFIR being almost always higher for the 1MIP trackers. To match the aspect ratio of the shortest 1MIP tracker, the 2MIP tracker needs to be built with the torque tube at nearly 3 meters!

 

There’s More to Bifacial Gain Than 1MIP vs 2MIP

All things considered, 1MIP comes out on top. 1MIP starts out with a higher bifacial solar resource (BFIR) than 2MIP, and the subsequent losses such as structural shading and mismatch are similar for both setups.

Utility-scale PV projects, however, should not select trackers based on the expected difference in bifacial gain alone. Installation costs, O&M and a trackers wind management approach can have a significant impact to a project’s LCOE and must be considered.  Stay tuned for a follow-up where I’ll go more deeply into these topics.

To learn more about these topics tune in on February 20, 2020 for a free webinar with Greentech Media. Register HERE

Click here for other articles by this author

1MIP vs 2MIP – The Facts on Bifacial Gain

In my previous post, Exploring Bifacial 2MIL for LCOE Optimization, I touched on the various formats ARRAY has used for bifacial mounting. I also talked about how we’re exploring every option and zeroing in on whether our standard format, 1 Module In Portrait (1MIP), is the best way to give our customers optimized bifacial solar production.

In this post, I’ll discuss in more detail how we’ve been testing 1MIP bifacial module performance and validating them against other third-party results—specifically, how we’re examining the pros and cons of the two most popular bifacial formats: 1MIP and 2 Module In Portrait (2MIP), and which is the better format for bifacial gains.

 

1MIP vs 2MIP Bifacial Solar Mounting

To quickly define terms, 1MIP stands for 1 module-in-portrait and 2MIP for 2 modules-in-portrait. A 1MIP bifacial panel is mounted across the solar tracker, while 2MIP has two separate panels on either side of the tracker post and torque tube.

With bifacial PV, it’s important to estimate how much light you’re receiving on the front side of the arrays, but also to calculate how much irradiance you get on the backside. Bifacial energy gains come from an increase in the total irradiance.

Our engineers have released third-party validated data showing that 1MIP collects more light on the backside than 2MIP. Using this 2D model, they were able to calculate how much of the ground is shaded, how much of the ground gets light from the sun, and how much of that reflected light the PV modules capture.

Back-to-front irradiance ratio (BFIR) describes the available light for bifacial and is a good measure of the total available bifacial resource. BFIR is dependent on the albedo, climate, ground-coverage ratio (GCR), and tracker aspect ratio (row height/width).

What our engineers are finding falls in line with PVsyst calculations and many other published white papers in the industry, all of which show higher BFIR for 1MIP systems than for 2MIP systems.

 

Shading Losses Are Not Zero, Even for 2MIP

There’s been talk about the potential shading of bifacial panels in a 1MIP format, and ideas that 2MIP solves this problem by spacing the panels out on either side. ARRAY partnered with PV Lighthouse to study this topic in detail. PV Lighthouse’s SunSolve™ software is widely regarded as one of the most advanced 3D ray-tracing solutions for PV.

One of the important findings from PV Lighthouse’s study was that it is in fact not a good idea to have a gap between the east and west panels. Any gap between the east and west panels effectively increases the ground coverage ratio when the row-to-row spacing is fixed, and the energy loss from the longer backtracking required ends up outweighing any benefit from the reduced shading on the back. So a zero east-west gap turns out to be the optimal setup for modules on 2MIP trackers, in which case the structural shading losses become very similar to the 1MIP trackers.

PV Lighthouse’s ray-tracing calculations further show that the mismatch loss from a torque tube shading is small, in the order of 0.2%. This is due to the backside irradiance arriving at the module at high angles from both sides of the torque tube, resulting in a soft shadow that causes only very small cell-to-cell total irradiance mismatch.

We carried out third party testing to see if the structural shading under high-albedo conditions can cause problems such as hot spots or bypass diode activations, but we were not able to reproduce such issues in realistic setups where the array is continuously maximum-power-point (MPP)-tracked with an inverter. There had been a prior work showing hot spots appear due to torque tube shading in a short-circuited module, but this setup is not representative of what happens in the real-world conditions.

Speculation that’s often brought up is that the height from the ground makes a big difference in BFIR. Three-dimensional ray-tracing studies, as well as two-dimensional view-factor approaches (possible with PVsyst) reveal that this notion is simply not true. It is the aspect ratio (ratio of the row height to the row width) that drives the BFIR, under the same conditions of GCR and albedo.

Sunlight arrives at the ground through the openings between the tracker rows, but a substantial portion of the ground-reflected light escapes back to the sky through those very openings. It is the aspect ratio, and not the absolute row height, that determines the ratio of captured versus lost light.

In the realistic ranges of row height, determined by material costs and workability on field, the aspect ratio is almost always higher for 1MIP trackers than 2MIP trackers, which in turn results in the BFIR being almost always higher for the 1MIP trackers. To match the aspect ratio of the shortest 1MIP tracker, the 2MIP tracker needs to be built with the torque tube at nearly 3 meters!

 

There’s More to Bifacial Gain Than 1MIP vs 2MIP

All things considered, 1MIP comes out on top. 1MIP starts out with a higher bifacial solar resource (BFIR) than 2MIP, and the subsequent losses such as structural shading and mismatch are similar for both setups.

Utility-scale PV projects, however, should not select trackers based on the expected difference in bifacial gain alone. Installation costs, O&M and a trackers wind management approach can have a significant impact to a project’s LCOE and must be considered.  Stay tuned for a follow-up where I’ll go more deeply into these topics.

To learn more about these topics tune in on February 20, 2020 for a free webinar with Greentech Media. Register HERE

Click here for other articles by this author

1MIP vs 2MIP – La cuestión de la ganancia bifacial

En esta publicación, se tratará con más detalle de cómo hemos estado probando el rendimiento de los módulos bifaciales 1MIP y validándolos frente a los resultados de otros terceros; en concreto, cómo estamos examinando los pros y los contras de los dos formatos bifaciales más populares: 1MIP y 2 Module In Portrait (2MIP), y cuál es el mejor formato para las ganancias bifaciales.

 

Montaje solar bifacial 1MIP vs 2MIP

Para definir rápidamente los términos, 1MIP significa 1 módulo en posición vertical y 2MIP, 2 módulos en posición vertical. Un panel bifacial 1MIP se monta a través del seguidor solar, mientras que 2MIP tiene dos paneles separados a cada lado del poste del seguidor y del tubo de torsión.

Con la energía fotovoltaica bifacial, es importante calcular la cantidad de luz que se recibe en la parte delantera de los paneles, pero también la irradiación que se recibe en la parte trasera. Las ganancias de energía bifacial provienen de un aumento de la irradiación total.

Nuestros ingenieros han publicado datos validados por terceros que demuestran que 1MIP recoge más luz en la parte trasera que 2MIP. Utilizando este modelo 2D, han podido calcular qué parte del suelo está a la sombra, qué parte del suelo recibe luz del sol y qué parte de esa luz reflejada captan los módulos fotovoltaicos.

El ratio de irradiación trasera-frontal (BFIR) describe la luz disponible para los bifaciales y es una buena medida del recurso bifacial total disponible. El BFIR depende del albedo, el clima, el índice de cobertura del suelo (GCR) y la relación de aspecto del seguidor (altura/anchura de la fila).

Los resultados de nuestros ingenieros coinciden con los cálculos de PVsyst y con muchos otros libros blancos publicados en el sector, todos los cuales muestran un BFIR más alto para los sistemas 1MIP que para los sistemas 2MIP.

 

Las pérdidas por sombreado no son nulas, ni siquiera para el 2MIP

Se ha hablado del posible sombreado de los paneles bifaciales en formato 1MIP, y de la idea de que el 2MIP resuelve este problema al espaciar los paneles a ambos lados. ARRAY se asoció con PV Lighthouse para estudiar este tema en detalle. El software SunSolve™ de PV Lighthouse está ampliamente considerado como una de las soluciones de trazado de rayos 3D más avanzadas para la energía fotovoltaica.

Una de las conclusiones importantes del estudio de PV Lighthouse fue que, de hecho, no es una buena idea tener un hueco entre los paneles este y oeste. Cualquier hueco entre los paneles del este y del oeste aumenta efectivamente el ratio de cobertura del suelo cuando se fija la distancia entre filas, y la pérdida de energía por el mayor tiempo de retroceso necesario acaba compensando cualquier beneficio de la reducción de la sombra en la parte trasera. Así pues, una separación este-oeste nula resulta ser la configuración óptima para los módulos de los seguidores 2MIP, en cuyo caso las pérdidas estructurales por sombreado son muy similares a las de los seguidores 1MIP.

Los cálculos de trazado de rayos de PV Lighthouse muestran además que la pérdida de desajuste por sombreado de un tubo de par es pequeña, del orden del 0,2%. Esto se debe a que la irradiación trasera llega al módulo en ángulos elevados desde ambos lados del tubo de torsión, lo que da lugar a una sombra suave que sólo provoca un desajuste muy pequeño de la irradiación total entre celdas.

Hemos llevado a cabo pruebas de terceros para comprobar si el sombreado estructural en condiciones de alto albedo puede causar problemas como puntos calientes o activaciones de diodos de derivación, pero no hemos podido reproducir estos problemas en configuraciones realistas en las que el conjunto es continuamente seguido por el punto de máxima potencia (MPP) con un inversor. En un trabajo anterior se demostró la aparición de puntos calientes debido al sombreado del tubo de par en un módulo cortocircuitado, pero esta configuración no es representativa de lo que ocurre en las condiciones del mundo real.

La especulación que se suele plantear es que la altura desde el suelo marca una gran diferencia en el BFIR. Los estudios de trazado de rayos tridimensionales, así como los enfoques de factor de visión bidimensional (posibles con PVsyst) revelan que esta noción simplemente no es cierta. Es la relación de aspecto (relación entre la altura y la anchura de la hilera) la que impulsa el BFIR, en las mismas condiciones de GCR y albedo.

La luz solar llega al suelo a través de las separaciones entre las filas de seguidores, pero una parte importante de la luz reflejada en el suelo se escapa al cielo a través de esas mismas partes. Es la relación de aspecto, y no la altura absoluta de la fila, lo que determina la relación entre la luz capturada y la perdida.

En los rangos realistas de la altura de la fila, determinados por los costes de los materiales y la capacidad de trabajo en el campo, la relación de aspecto es casi siempre mayor para los seguidores 1MIP que para los seguidores 2MIP, lo que a su vez resulta en que el BFIR es casi siempre mayor para los seguidores 1MIP. Para igualar la relación de aspecto del seguidor 1MIP más corto, el seguidor 2MIP debe construirse con el tubo de torsión a casi 3 metros.

 

La ganancia bifacial es algo más que 1MIP frente a 2MIP

Teniendo en cuenta todo esto, el 1MIP sale ganando. El 1MIP comienza con un mayor rendimiento solar bifacial (BFIR) que el 2MIP, y las pérdidas subsiguientes, como el sombreado estructural y el desajuste, son similares para ambas configuraciones.

Sin embargo, los proyectos fotovoltaicos a gran escala no deberían seleccionar los seguidores basándose únicamente en la diferencia esperada en la ganancia bifacial. Los costes de instalación, la operación y mantenimiento y el enfoque de gestión del viento de los seguidores pueden tener un impacto significativo en el LCOE de un proyecto y deben tenerse en cuenta.

Para aprender más sobre estos temas, puede ver el 20 de febrero de 2020 un webinar gratuito con Greentech Media.

Click here for other articles by this author